Asymptotic Properties of the Residual Bootstrap for Lasso Estimators
نویسندگان
چکیده
Abstract. In this article, we derive the asymptotic distribution of the bootstrapped Lasso estimator of the regression parameter in a multiple linear regression model. It is shown that under some mild regularity conditions on the design vectors and the regularization parameter, the bootstrap approximation converges weakly to a random measure. The convergence result rigorously establishes a previously known heuristic formula for the limit distribution of the bootstrapped Lasso estimator. It is also shown that when one or more components of the regression parameter vector are zero, the bootstrap may fail to be consistent.
منابع مشابه
Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملLimiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model
The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...
متن کاملOn the Second Order Behaviour of the Bootstrap of L_1 Regression Estimators
We consider the second-order asymptotic properties of the bootstrap of L_1 regression estimators by looking at the difference between the L_1 estimator and its first-order approximation, where the latter is the minimizer of a quadratic approximation to the L_1 objective function. It is shown that the bootstrap distribution of the normed difference does not converge (eit...
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملAsymptotics for Lasso - Type Estimators
We consider the asymptotic behavior of regression estimators that minimize the residual sum of squares plus a penalty proportional to ∑ βj γ for some γ > 0. These estimators include the Lasso as a special case when γ = 1. Under appropriate conditions, we show that the limiting distributions can have positive probability mass at 0 when the true value of the parameter is 0. We also consider asymp...
متن کامل